Lausanne, Switzerland – September 2-3, 2009

International Scientific Conference CISBAT 2009

Renewables in a changing climate – From nano to urban scale

LIFE CYCLE ASSESSMENT OF A POSITIVE ENERGY HOUSE IN FRANCE

Stéphane Thiers and Bruno Peuportier

Centre for Energy and Processes, MINES ParisTech

Introduction

 The « positive energy house »: A concept of high-performance residential house

• Energy saving

- High insulation level
- Air tightness
- Heat recovery from extracted air
- Efficient equipment
- ⇒ Low heating and electricity consumption
- ⇒ Can be achived applying the « *Passive House* » approach

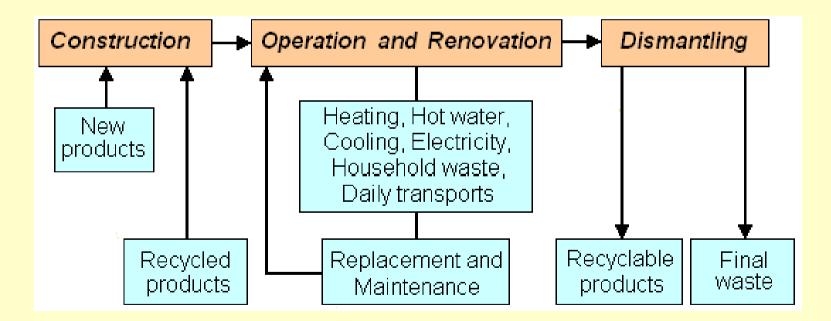
Energy recovery from local renewable resources

- Solar radiation
- Wind
- Biomass (Wood, biogas)
- Heat from the environment (air, ground, water)

Introduction

• One objective:

To achieve a positive *primary energy* balance for the building, on a yearly basis


Local balance approach: Considering local production as saved consumption

- Why building a PEH?:
 - Environmental and economical benefits
 - Recovery of energy from decentralized renewable resources
- But a PEH needs more materials and more components
- ⇒ More embodied energy and increased environmental impacts at the construction

We need to check the environmental relevance of the PEH concept.

Life Cycle Assessment (LCA)

- LCA applied to a PEH to evaluate the environmental impacts
- Inventory of the energy and material flows (I/O) for each phase of the life cycle using databases (e.g. Ecoinvent)

• Evaluation of impact indicators (e.g. CML)

September 2-3, 2009

Method

- 1. Evaluation of the energy assessment, using a thermal dynamic simulation tool: COMFIE
 - Multizone simulator developed by CEP at MINES ParisTech
 - One year simulation
 - Heating load
 - > Temperature in each zone, for thermal comfort evaluation

Method

- 1. Evaluation of the energy assessment, using a thermal dynamic simulation tool: COMFIE
 - Multizone simulator developed by CEP at MINES ParisTech
 - One year simulation
 - Heating load
 - Temperature in each zone, for thermal comfort evaluation
- 2. Evaluation of the LCA, using a specific tool: EQUER
 - Building LCA software developed by CEP at MINES ParisTech
 - Calculation of 12 impact indicators:

Impact indicator	Unit	Legend
Cumulative Energy Demand	GJ	ENERGY
Water consumption	m ³	WATER
Abiotic Depletion Potential	kg Sb-eq	RESOURCE
Non-radioactive waste creation	t eq	WASTE
Radioactive waste creation	dm ³	RADWASTE
Global Warming Potential at 100 years (GWP ₁₀₀)	t CO ₂ -eq	GWP ₁₀₀
Acidification Potential	kg SO ₂ -eq	ACIDIF.
Eutrophication Potential	kg PO ₄ 3eq	EUTROPH.
Damage caused by the ecotoxic emissions to ecosystems	PDF.m ² .yr	ECOTOX
Damage to human health	DALY	HUMHEALTH
Photochemical Oxidant Formation Potential (Smog)	kg C ₂ H ₄ -eq	O ₃ -SMOG
Sel Odour	Mm ³	ODOUR

Description of the building

- Two attached houses in North of France
 - Two-storied
 - 132 m² inhabitable area

1236

2.13 m

Ι

Description of the building

- « Passive house » label (PHI)
- Timber frame structure
- High insulation
 - external walls (22 cm Cellulose, 15 cm Polystyrene)
 - **slab** (20 cm Polystyrene)
 - attic (40 cm cellulose)
 - **doors** $(U = 0.78 \text{ W}.\text{m}^{-2}.\text{K}^{-1})$
 - Triple-glazed windows ($U_w = 0.71 \text{ W W}.\text{m}^{-2}.\text{K}^{-1}$)
- Air-tightness (0,58 ach at 50 Pa)
- Solar protection (external venetian blinds)

- Earth-to-air heat exchanger (length 2 x 30 m) Heat Recovery Ventilation (efficiency 70%) Electric compact heat pump (COP 3)
- **Thermal solar panels** (2 x 5 m²)

•

Simulations

- Passive houses « virtually improved » by addition of Si polycristaline PV panels on the roof (76.6 m²)
- 3 different heating solutions:
 - 1. Compact electric heat pump (COP 3) (HP)
 - 2. Wood pellet condensing boiler (HHV mean efficiency: 75 %) (*CB*)
 - 3. Wood pellet Stirling engine micro-cogeneration unit (CHP)

Micro-CHP unit based on the

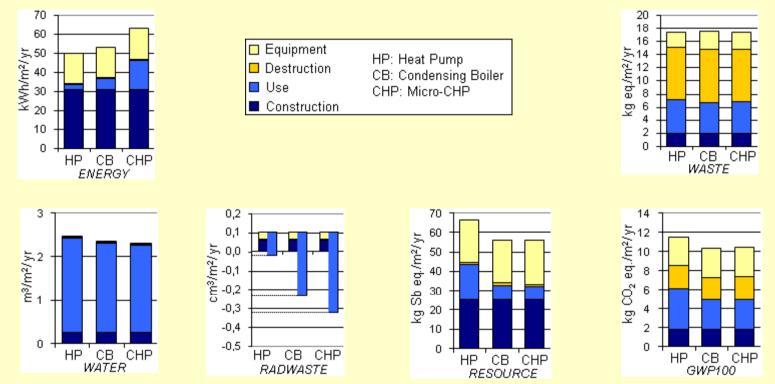
« Sunmachine Pellet » unit \rightarrow previously characterized on a test bench and modeled at MINES ParisTech

• One year simulation (weather: Paris region = oceanic climate)

CISBAT 2009

• Computed energy loads of both houses (independent from the heating device)

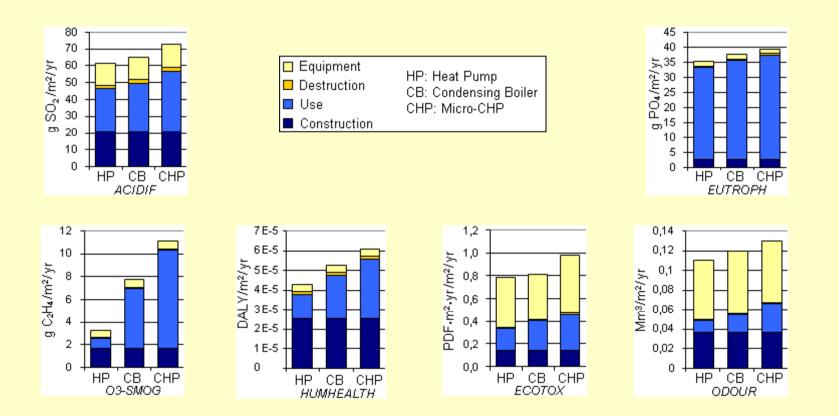
Energy	Use	kWh/yr	kWh/m²/yr	
Heat	Heating	2032	7.7	17.7%
	Domestic Hot Water production	5255	19.9	45.9%
Electricity	Cooking, Lighting, other appliances	2354	8.9	20.6%
	Ventilation	1807	6.8	15.8%
Total		11 448	43.4	100%


- Very low heating load
- DHW production represents half the whole building load
- Thermal comfort is satisfactory most of the time

• Consumption and supply of both houses

	Consumption kWh/yr		Supply kWh/yr	kWh _{PE} /yr	
Heating device	Wood	Electricity	Electricity	Electricity	Net Primary
device	pellets	heating	base	base	Energy Production
HP	0	677	4837	6418	+2805
СВ	5413	0	4161	6418	+1160
СНР	9228	0	4870	7586	-1644
PE ratios kWh _{PE} /kWh	1.12	3.33	3.2	3.2	

- PEH for both HP and CB solutions
- Limited performance of the CHP


- LCA hypothesis
 - Lifetime of the building: 80 years
 - Household waste treatment and home-work transportation are not accounted for
- Results

4 indicators increased by electricity consumption

CISBAT 2009

Indicators increased by wood consumption

Discussion

- Here, PEH with high performance
 - e.g. low GWP₁₀₀ : 11 kg CO₂/m²/yr
- Environmental impacts remain positive during the operation phase due to:
 - Water consumption (water purification, sewage treatment)
 - Wood consumption (combustion)
 - Electricity consumption (generation)
- Important contribution due to the equipment for some indicators
 - Production process may be improved
 - Recycling may be implemented
 - High contribution of the PV panels

Conclusions

- A PEH has been studied using energy and life cycle assessment
- Strong influence of the heating device on some indicators
- None of the three solutions seems optimal but:
 - PEH contributes to the reduction of radioactive waste production, especially when not equipped with a heat pump
 - Condensing boiler and CHP reduce some impacts (e.g. contribution to greenhouse effect) but wood combustion reinforces air and water chemical pollution
 - The improvement of the efficiency of the micro-CHP unit could reduce these negative impacts.

Thank you for your attention